In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in Cellvibrio japonicus.
نویسندگان
چکیده
The depolymerization of the recalcitrant polysaccharides found in lignocellulose has become an area of intense interest due to the role of this process in global carbon cycling, human gut microbiome nutritional contributions, and bioenergy production. However, underdeveloped genetic tools have hampered study of bacterial lignocellulose degradation, especially outside model organisms. In this report, we describe an in-frame deletion strategy for the Gram-negative lignocellulose-degrading bacterium Cellvibrio japonicus. This method leverages optimized growth conditions for conjugation and sacB counterselection for the generation of markerless in-frame deletions. This method produces mutants in as few as 8 days and allows for the ability to make multiple gene deletions per strain. It is also possible to remove large sections of the genome, as shown in this report with the deletion of the nine-gene (9.4-kb) gsp operon in C. japonicus. We applied this system to study the complex phenotypes of cellulose degradation in C. japonicus. Our data indicated that a Δcel5B Δcel6A double mutant is crippled for cellulose utilization, more so than by either single mutation alone. Additionally, we deleted individual genes in the two-gene cbp2ED operon and showed that both genes contribute to cellulose degradation in C. japonicus. Overall, these described techniques substantially enhance the utility of C. japonicus as a model system to study lignocellulose degradation.
منابع مشابه
A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus
The degradation of plant biomass by saprophytes is an ecologically important part of the global carbon cycle, which has also inspired a vast diversity of industrial enzyme applications. The xyloglucans (XyGs) constitute a family of ubiquitous and abundant plant cell wall polysaccharides, yet the enzymology of XyG saccharification is poorly studied. Here, we present the identification and molecu...
متن کاملIn vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions
Background Xyloglucan (XyG) is a ubiquitous and fundamental polysaccharide of plant cell walls. Due to its structural complexity, XyG requires a combination of backbone-cleaving and sidechain-debranching enzymes for complete deconstruction into its component monosaccharides. The soil saprophyte Cellvibrio japonicus has emerged as a genetically tractable model system to study biomass saccharific...
متن کاملThe modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
beta-1,4-Mannanases (mannanases), which hydrolyse mannans and glucomannans, are located in glycoside hydrolase families (GHs) 5 and 26. To investigate whether there are fundamental differences in the molecular architecture and biochemical properties of GH5 and GH26 mannanases, four genes encoding these enzymes were isolated from Cellvibrio japonicus and the encoded glycoside hydrolases were cha...
متن کاملRequirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus.
Cellulosic biofuels represent a powerful alternative to petroleum but are currently limited by the inefficiencies of the conversion process. While gram-positive and fungal organisms have been widely explored as sources of cellulases and hemicellulases for biomass degradation, gram-negative organisms have received less experimental attention. We investigated the ability of Cellvibrio japonicus, ...
متن کاملSystems analysis in Cellvibrio japonicus resolves predicted redundancy of β-glucosidases and determines essential physiological functions.
Degradation of polysaccharides forms an essential arc in the carbon cycle, provides a percentage of our daily caloric intake, and is a major driver in the renewable chemical industry. Microorganisms proficient at degrading insoluble polysaccharides possess large numbers of carbohydrate active enzymes (CAZymes), many of which have been categorized as functionally redundant. Here we present data ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 17 شماره
صفحات -
تاریخ انتشار 2015